Category: Uncategorized

Common Winter Pests in Rhode Island: What to Look Out For 

Rhode Island winters are notorious for their large amounts of snow, icy conditions, and extended periods of frigid temperatures. Although you might assume that those conditions keep pests at bay, winter can be a very active time for many of the state’s most common pests. Learning about the types of pests to watch out for along with how to watch for signs of pest activity and what to do if you suspect a pest are essential components in home protection.  

Common Winter Pests in Rhode Island 

People like to cuddle up with each other and get cozy during the cold weather months. Unfortunately, that is also true for many pests, which drives them to move indoors and find a warm place to call home. Let’s take a look at six common winter pests in Rhode Island, along with tips from the experts at Catseye Pest Control for preventing infestations. 

Rodents 

Rodent infestations may be one of the top complaints that many pest control companies get during winter, including house mice, deer mice, field mice, and rats. Rodent activity seemingly surges during winter because mice and rats move indoors for warmth and shelter. Both types of animals can squeeze through tiny openings to nest inside walls, attics, and even under appliances. These critters are a health hazard that can contaminate food and surfaces with pathogens that cause diseases like hantavirus and salmonella. Rodents also commonly chew through wiring, insulation, and structural elements.  

Rodent Prevention Tips 

Maintaining sanitary conditions and eliminating easy food sources for rodents is an excellent starting point for preventing rodent infestations. Top tips include: 

  • Store food in airtight containers made of rigid plastic, glass, or metal, including pet food.
  • Use rodent-proof garbage receptacles with tight-fitting lids inside and outside.
  • Seal entry points like gaps and cracks in the foundation, soffits, around pipes, and in siding.
  • Maintain your property by trimming bushes, trees, and low foliage to help reduce rodent harborage.
  • Keep wood piles and other debris far from the structure.

If you suspect you have a winter rodent infestation, call for professional rodent control ASAP for effective elimination.  

Spiders 

From the common house spider to species like the bark crab spider, Rhode Island’s spider population can remain active year-round. Spiders survive cold weather by finding shelters to keep themselves and their egg sacs protected. Although they tend to be more active during warm weather, once inside, spiders seek warm, moist, dark spots where they can thrive. 

Spider Prevention Tips 

Sealing holes and cracks in your roof, siding, foundation, and around windows and doors can prevent spiders from entering. Cleaning regularly, reducing clutter, and eliminating food sources can also help minimize the risk of infestation. 

Cockroaches 

Cockroaches have been on the earth for hundreds of millions of years. They are renowned for their adaptability and resilience to many conditions, including winter’s chill. When the weather gets cold, German and American cockroaches will move into homes around New England, seeking shelter preferably in warm, moist spots. In addition to seeing live bugs, signs of cockroach activity include coffee ground-like droppings, dead cockroaches, and a musty smell. 

Cockroach Prevention Tips 

Taking a few precautionary measures can significantly enhance cockroach prevention efforts. These include: 

  • Sealing gaps and cracks, particularly any in your foundation, exterior walls, and around doors and windows.
  • Keeping a clean, minimally cluttered interior helps limit hiding spots and reduce potential food sources for insects.
  • Avoid leaving dirty dishes in the sink or any uncovered food on counters or tables overnight.
  • Regularly take the garbage out and store all food, including pet food, in sealed containers.
  • Make sure there are no leaky pipes in the basement, kitchen, or bathroom areas.

Professional cockroach control is the most effective way to get rid of these creepy crawly pests and keep them away for good.  

Bed Bugs 

Bed bugs can be a nightmare in any season. These ectoparasites, which is a category of pests that live outside of their hosts, slow down a bit in winter, but they don’t hibernate. The cozy temperatures inside your home can keep bed bug populations thriving all year long. If you have warm, thick bedding, these six-legged insects can be even more difficult to discover. 

Bed bugs can hitch a ride into your home on clothing, upholstered items, and luggage. Once inside, they find dark crevices to hide away and reproduce, coming out only to feed on the blood of their hosts. Signs of bed bug activity include itchy bites, spots of blood on bedding, and dark stains along the edges of mattresses, box springs, and baseboards. 

Bed Bug Prevention Tips 

Eliminating spots for bed bugs to hide can go a long way toward reducing your chances of an infestation. Reduce clutter, invest in bed bug covers for your mattress and box spring, and routinely wash and dry your bedding. Because bed bug infestations can be notoriously challenging to eliminate on your own, it’s important to call for professional help promptly if you suspect a problem.  

Silverfish 

Silverfish are small and quite destructive. Although their size is roughly comparable to a nickel, these steel-colored insects can wreak havoc. They don’t hibernate and remain active, even in the coldest months. These insects are active at night and rarely sting people. However, silverfish consume polysaccharides, which are sugary components that are found in various objects already in your home. Book glue, furniture, artwork, carpet fibers, and wooden beams are all vulnerable. Silverfish love moist environments, which is where they typically leave their eggs.  

Silverfish Prevention Tips 

One of the ways to help prevent these moisture-loving pests from setting up shop in your home is by reducing the moisture inside. Use a dehumidifier in damp areas like basements and crawl spaces and ensure bathrooms and kitchens are well ventilated. It’s also helpful to store all the dry goods in your pantry in sealed containers and dust your home frequently. Keeping your property free of debris, including leaves and dead plants, can help ward these pests off in outdoor areas. 

Ants

Typically, ant activity decreases in winter. However, like many pests, ants spend time in autumn looking for a warm spot to take shelter from winter’s cold. If you notice ant activity indoors during winter, one of two scenarios is likely. Either you already had a colony in your home, or a colony moved in during late fall. Homeowners may see foragers or swarmers, which indicates a colony is nearby. Typically, ants build their colonies in out-of-the-way spots. Examples of places to look include under floors, inside wall cavities, inside window and door frames, and inside cabinets. 

Ant Prevention Tips 

One of the best ways to prevent ants in winter and in any season is by cutting off their food source. It helps to keep a clean home, regularly wiping the counters and sweeping up any crumbs. Avoid leaving food debris and pick up pet food once they are finished eating. With no access to food, ants often either die off or move to a new home. 

Contact Catseye for Professional Winter Pest Control in Rhode Island 

Dealing with winter pests in Rhode Island isn’t always easy. By keeping a watchful eye and taking preventive measures like those mentioned above, you can help keep your home safe from unwanted winter guests. When prevention isn’t enough and you find yourself facing a pest problem, don’t hesitate to call Catseye. 

Our trained, licensed team of technicians will perform a thorough free inspection to identify the type of pests that are invading your home. Then, they will develop a custom treatment plan to eliminate winter pests quickly, safely, and effectively. Contact us today to schedule an inspection and begin enjoying a pest-free winter season in the Ocean State. 

The post Common Winter Pests in Rhode Island: What to Look Out For  appeared first on Catseye Pest Control.

This article appeared first on Catseye Pest

Picking up good vibrations from big Bornean beetles: flat-faced (Lamiinae) and tooth-necked (Prioninae) longhorn beetles

 

One look at this beautiful Batocera beetle makes it easy to understand why they are called longhorn beetles.

 

Once again, we return to the rainforests of Borneo where in previous episodes we met marvelous millipedes, fierce terrestrial and arboreal ants, and gorgeous lanternflies. This week we meet some of the largest beetles on the planet, longhorn beetles. One look at these supersized insects reveals exactly why they are called longhorn beetles. These beauties have antennae that often exceed the entire length of their body. Despite what some may think, touch is but one of the functions of antennae for insects. In addition to picking up tactile vibrations, antennae are usually festooned with a vast array of chemoreceptors used to detect everything from something good to eat, to where the party is, to who might be the love of their life. Longhorn beetles like the ones you see here can communicate with other members of their species using airborne chemicals called pheromones over distances of hundreds of yards.

One would think that these large beetles would be a prime target for predators like birds and lizards hankering for a tasty high protein meal. Fortunately, these beetles and many other species of insects have a clever trick up their sleeve, or better said, between two thoracic segments of their body. Just behind the beetle’s head on the first segment of the thorax, a small sharp ridge of exoskeleton called the scraper runs transversely across the undersurface surface of the segment. On the segment just behind the first, the exoskeleton bears a patch of tiny regularly spaced ridges and grooves. As the beetle flexes and relaxes these body segments, the scraper moves over the patch of groves, producing a clearly audible sound. These acoustic vibrations, called stridulation, are found in many species of insects and are used to attract mates, defend territories, or as a defense to startle predators. In the case of our very large and beautiful longhorn beetles, when captured they flexed their body up and down, producing an annoying and surprisingly load squeaking sound, not quite fingernails on a chalkboard but close to it.

Borneo has lots of big beautiful longhorn beetles with a cool trick to ward off predators. Listen as this Batocera beetle produces a squeaky sound by rubbing two body segments together. A hard scraper on one segment of its thorax moves across a series of tiny groves and ridges on the segment just behind the first to produce acoustic vibrations called stridulation. We found a huge tooth-necked beetle in a bathroom one morning. This giant really amped up the squeaky alarm when harassed by a human.  After scaring and entertaining the humans, upon release, it scampered up a nearby palm tree.

Someone left the light on in the bathroom and someone else had a big surprise when they walked into the bathroom the next morning. Longhorn beetles are really big in Borneo. Credit: P. M. Shrewsbury, UMD

We were fortunate to discover a spectacular toothed-neck longhorn in a bathroom one morning where it was attracted to the lavatory by a light left on overnight. When grabbed by a human, this giant really amped up its stridulatory vibrations. Loud squeaks coupled with flailing legs and spiny body armor made this beetle hard to handle even for a bug geek. One can only imagine the surprise a small barbet gets when it snares a large longhorn beetle and encounters thrashing legs, snapping jaws, and brain-rattling vibrations from its intended meal.

Acknowledgements

Bug of the Week thanks Dan for wrangling the large tooth-necked beetle for this episode and Paula for sharing her images. Kristie, Bob, and Pat provided sterling commentary on stridulation and its importance to longhorn beetles. Two informative references, “Cerambycid Beetle Species with Similar Pheromones are Segregated by Phenology and Minor Pheromone Components” by Robert F. Mitchell, Peter F. Reagel, Joseph C. H. Wong, Linnea R. Meier, Weliton D. Silva, Judith Mongold-Diers, Jocelyn G. Millar, and Lawrence Hanks, and “Stridulatory Apparatus and Analysis of the Acoustics of Four Species of the Subfamily Lamiinae (Coleoptera: Cerambycidae) by Warrren E. Finn, Victor C. Mastro, and Thomas L. Payne, provided insights into stridulation and mating behaviors of longhorn beetles.

This post appeared first on Bug of the Week

Destinations: Lizard Island, Australia and Mulu National Park, Borneo to learn about cooperation – a lesson delivered by Green tree ants, Oecophylla smaragdina

 

With sharp jaws ready, workers prepare to defend the colony from nosy bug geeks. Image: P. M. Shrewsbury, UMD

 

In recent episodes we visited traveled to Borneo to visit recycling millipedes, beautiful lanternflies, fierce rainforest ants, and one of the largest ant species on our planet. This week we island hop and make two stops. First stop is Lizard Island just off the coast of Australia on the Great Barrier Reef. Second stop is a return to the rainforests of Borneo. A few years ago, a study abroad landed Bug of the Week on Lizard Island. While bumbling through the underbrush in search of spiders, I bumped into a small tree bearing several football-sized clusters of glossy leaves. I was surprised and delighted when scores of beautiful green ants issued forth from one leaf-cluster and set to work defending their redoubt by dropping on my arm and attacking. Fortunately, the furious soldiers lacked stingers and their bite was mildly unpleasant at worst. Their attack left the air laced with the odor of formic acid released from specialized poison glands as a defense.

Food gathered on the ground will be carried along roots and up into the treetop where nests are built. When nosy humans get a little too close, workers guarding the nest are on high alert, ready to attack.

A pair of workers exchange some information and maybe some food.

Green tree ants and other weaver ants represent a unique branch of the ant’s evolutionary tree. While other more familiar ants build colonies in soil or decaying wood, weaver ants live the life arboreal and construct clever nests in the canopies of trees. Nest building begins when one or more large workers known as majors grasp the margin of a leaf and fold it over or hold it in close proximity to an adjacent leaf. Other majors soon join the effort and, in a fascinating display of cooperation, they stand shoulder to shoulder to pull the leaf margins into close approximation to each other. When the gap narrows the workers stand in place, hold the leaf fast, and await the next step in the nest making process. Other workers gather ant larvae from deep within the colony. These youngsters are approaching their time of pupation, a time when they produce silk, and in their heads are fully functional silk glands. The workers gather several of these larvae and carry them to the construction site where leaf-grasping workers await their arrival. Using the silk-spinning larvae as living bobbins, workers move the larvae back and forth, weaving silk across the gap, firmly stitching the leaves together. This process is repeated time and again with other nearby leaves until the nest is complete.

Some ants, including green tree ants, conduct a remarkable behavior called social carrying where one ant picks up and transports another. This may be a way to get more workers to an important project pronto. Video at about half speed.

A single colony of green tree ants may consist of several smaller nests distributed in several trees. P. M. Shrewsbury, UMD

Green tree ants build multiple nests throughout the tree’s canopy and several trees may be enlisted to house a single colony. In one of these individual nests resides the glorious queen whose task it is to eat meals of protein and carbohydrates brought to her by the workers. These rich nutrients are turned into thousands of eggs. Since workers large and small, young and old, share the same mother, the queen, they are all sisters and the building, care, and defense of the colony truly is a remarkable act of sisterly cooperation. The size of some weaver ant colonies has been estimated to exceed more than 500,000 workers. Like many of their kin, green tree ants are omnivores, consuming other insects they capture and gathering carbohydrates in the form of honeydew excreted by legions of arboreal sucking insects such as scale insects, aphids, and spotted lantern flies we met in previous episodes.

I had a golden chance to witness another extraordinary feat of cooperation in the rainforest of Borneo one evening when weaver ants discovered and captured an enormous scarab beetle. This colossal meal was easily a hundredfold more massive than the weight of a single ant. The problem: How do ants bring this banquet back to the nest to feed the queen and brood? The answer: Sisterly cooperation! As you watch the video, witness scores of worker ants transporting the huge beetle along a wooden rail adjoining a walkway. After encountering a vertical fencepost, ants use sister power to levitate the beetle up and over the post. On the other side of the post a short hike brings them to a leafy bridge that serves as a causeway to their arboreal nest. On the way home as night falls, the crotch between two leaves becomes an insoluble obstacle and the beetle becomes trapped. At sunrise the next morning, the beetle was gone and a solitary worker was stationed at the portal where the leafy trail home met the walkway. Was the beetle dismembered and carried piece by piece back to the nest? Did the sisters lose their grip and drop their prize? Was there an alternate and more passible route back to the nest? Only the weavers know. 

Scores of worker ants transport a huge scarab beetle along a wooden rail adjoining a walkway. After encountering a vertical fencepost, ants cooperate and use sister power to levitate the beetle up and over the post. On the other side of the post a short hike brings them to a leafy bridge that serves as a causeway to their arboreal nest. On the way home as night falls, the crotch between two leaves becomes an insurmountable obstacle and the beetle becomes trapped. At sunrise the next morning, the beetle was gone and a solitary worker stationed at the portal guarded the leafy trail from the walkway back to the nest. Video at twice life speed.

Well, green tree ants prove they can cooperate with other members of the family, but how about with other species of creatures, maybe even with humans? The value of weaver ants in pillaging plant-eating insects was recognized nearly 1,800 years ago by citrus growers in China. Ancient writings show that nests of weaver ants were regularly transported and installed in orchards where ravenous workers converted citrus-eating pests into food for the colony and queen. These clever orchardists are credited with one of the earliest records of a practice still widely used in crop protections today called biological control. Maybe humans can learn something about the value of cooperation by taking some time to watch ants.

Acknowledgements

Bug of the Week thanks Dr. Shrewsbury for providing photographs used in this episode and the students and faculty of BSCI 279A, Natural History, Ecology, and Geology of Australia, for providing the inspiration for this story. The spectacular reference “The Ants” by Bert Hölldobler and Edward O. Wilson provided the information used to prepare this episode. We thank Dan for discovering the large scarab beetle seen in this episode, the eagle-eyes of Kristie, Bob, and Pat for spotting insects and Paula for sharing images used in this episode.

This post appeared first on Bug of the Week

Dealing with Pests in Firewood: Tips for a Pest-Free Winter 

Winter is here, and for many of us in the Northeast, that means curling up and getting cozy by the fireplace or wood stove to enjoy the warmth and ambiance of the fire. Firewood is an essential resource for millions of Americans who rely on it as a primary or supplemental heating fuel. Today, rising energy costs have driven market growth in the firewood industry, with more people turning to wood as their preferred heat source.  

Whether this is your first winter using wood heating or you’re a seasoned pro, it’s critical to understand one of the most often overlooked aspects of heating with wood. The firewood neatly stacked near your home can provide insects and rodents with a way into your home. Pest invasions can occur after they hitch a ride on firewood and take up shelter inside to wreak havoc on your indoor spaces.  

Fortunately, pest control for firewood is possible by taking the right steps. Catseye Pest Control is leveraging its decades of experience to provide you with some of the best tips for firewood pest control. Check out these strategies to help keep your home warm and safe from firewood-invading pests all season long.  

Dealing with Pests in Firewood 

Pests and firewood can go hand in hand. The invading insects and rodents that take shelter in firewood don’t only infest interior spaces; they can also affect the environment at large. Pests that burrow into trees can spread across regions by hitching rides on untreated firewood. To avoid spreading invasive species to other areas, the U.S. Department of Agriculture recommends sourcing firewood where you burn it and opting for heat-treated wood when possible to help protect trees and shrubs.  

Protecting your slice of the great outdoors isn’t the only priority when it comes to your firewood. Not only can mice or rats sneak in along with your firewood, but many insects can attack fresh-cut logs or be found inside firewood. Examples of firewood pests include carpenter ants, spiders, powderpost beetles, earwigs, centipedes, and stink bugs — just to name a few. 

Let’s take a look at eight tips to help keep your firewood (and your home) safe and pest-free. 

Inspect and Source Firewood Carefully 

In addition to using local firewood, it’s important to obtain it from reputable sources. If you cut your firewood on your own, place newly cut wood in sunny areas and cover it to kill insects. Cutting wood in fall can also help reduce the risk of an infestation of insects that emerge in spring or summer. Finally, before you bring firewood into your home, be sure to carefully inspect each piece. Knock two logs together, shake them, and look for any insects clinging to the outside. 

holes in the end of a piece of firewood caused by beetles

Store Firewood Off the Ground 

How and where you store your firewood can make a huge difference. When wood is stored on the ground, ants and termites can easily infest it and leave you vulnerable to potentially destructive carpenter ants or in need of professional termite control. Using a firewood holder or another support system to keep the wood off the ground will help keep the wood dry and reduce the likelihood that soil-dwelling pests will infest it. 

Keep Firewood Dry 

Termites, carpenter ants, and other moisture-loving insects will see damp firewood as a neon “welcome” sign. Elevating it off the ground helps, but it’s important to also cover it to keep it dry. The result will be improved pest deterrence, and the wood will burn more efficiently. Cover it with a waterproof, polyethylene cover to let heat and light into the pile to aid in drying. Additionally, using a vapor barrier on the ground beneath your storage structure can also help block moisture coming from the ground. 

Rotate Your Stock 

Use the “first in, first out,” method to ensure you’re always using older wood first. Aging wood is more vulnerable. If you continually use what’s on top of the pile and add new wood to the top, the wood at the bottom can become infested without you knowing it. If needed, rotate the pile periodically to avoid letting any wood remain at the bottom for longer than a year.  

Store Firewood Away from Your Home 

Keeping the wood pile next to your home may seem like a convenient option. Obviously, it is, but it also makes it all too convenient for rodents and insects to find their way from your firewood storage into your home. Maintain a distance of at least three feet between the pile and your home and other structures. That way, if you do have an infestation, it will be easier to control without pests getting inside. 

black carpenter ants swarming on a wood surface

Use Insect-Repellent Products 

Don’t spray the wood itself with insect repellents. The vapor can be harmful when you use the wood in a fire. Instead, treat the soil in your storage area and use insect baits or rodent monitoring devices around the wood pile. 

Regular Cleaning and Maintenance 

In addition to conducting routine inspections of the firewood, it’s helpful to keep the area clean and tidy to avoid inviting unwanted guests. Remove any infested wood promptly and keep the surrounding area free of debris. Keeping the location tidy and well-maintained reduces the chance of pests deciding to make it their new home. 

Monitor and Be Vigilant 

As with any other pest prevention strategy, vigilance is the name of the game. Keeping your eyes carefully peeled for the presence of pests or signs of an infestation can help you gain control faster. It can also mean the difference between an outdoor issue and an indoor infestation.  

Contact Catseye for Professional Pest Control 

When winter pest control tips fail, we’re here to help you regain peace of mind. Catseye has decades of expertise and a proven track record throughout Massachusetts, Connecticut, Rhode Island, and New Hampshire. For help in winter, spring, summer, and fall, contact the experts at Catseye to schedule a free inspection.  

The post Dealing with Pests in Firewood: Tips for a Pest-Free Winter  appeared first on Catseye Pest Control.

This article appeared first on Catseye Pest

Gi-ant! Malaysian Giant Forest Ants in Borneo, Dinomyrmex gigas

 

Night time is the right time to observe and enjoy Malaysian giant forest ants in Borneo.

 

This week we say goodbye to periodical cicadas and return to the rainforests of Borneo where we last visited rapacious Leptogenys ants, rainforest raiders, as they pillaged other small animals on the rainforest floor. This week we venture into the forest to meet one of the largest species of ants on the planet, the Malaysian giant rainforest ant.  

To witness these giants of the ant world, a flashlight and willingness to venture into the forest at night provide your best bet for encountering these behemoths of the ant world. Unlike some species of ants that can readily be found during the daytime, giant ants conduct most of their food gathering at night. Scientists have discovered that shortly after dusk scores to thousands of foragers leave one or more subterranean nests that comprise a colony, move across the forest floor, and invade the forest canopy.  High in the treetops, honeydew produced by sucking insects including planthoppers, treehoppers, and lanternflies constitutes about 90% of what foragers collect to bring back to the nests. The remaining sources of food gathered by workers include small insects and nutrient rich bird droppings. Why forage at night rather than during the day? Night time foraging in the forest canopy may have to do with avoidance of predators and parasitoids. Birds and wasps that rely on sight to find prey may be more active and efficient in trees during daylight hours. Also, several other species of ants living in the same habitats are highly active and dominate foraging trails and resources during daylight hours. High levels of interspecific ant traffic and food raids in the canopy may displace giant tree ants and limit their activities to the night.

Amidst the music of the rain forest at night, Malaysian giant forest ants leave their subterranean nests to forage for honeydew and insects. Their journeys take them across the forest floor, along human-made sidewalks, and eventually to treetops to gather carbohydrate rich honeydew from sucking insects and to hunt small insects. These gentle giants seemed completely unfazed at being admired by a nosy bug geek.

A giant forest ant from Borneo ogles its puny North American cousin, the odorous house ant. Size differences are accurate and, yes, this image is photo-shopped.

Just how large these giant ants? Well, the regular workers like ones seen in this episode are about 21 mm (0.82 inches) in length while the soldiers which, sadly, we did not see, are larger at 28 mm (1.1 inches). Contrast this massive size with the size of the odorous house ant workers, an ant common here in North America, which run about 3.3 mm (0.1 inches) in length. One can only imagine what a stir giant ants would cause if folks found these wandering around the kitchen in the morning here in the US. Wouldn’t that be amazing?

Acknowledgements

The fascinating articles “Contributions to the life history of the Malaysian giant ant Camponotus gigas (Hymenoptera, Formicidae) by M. Pfeiffer and K.E. Linsenmair and “A briefing on the life history of the giant forest ant Camponotus gigas (pdf) by Martin Pfeiffer were consulted for this episode. We thank Oliver at Tabin Wildlife Reserve and Larry at Mulu National Park for guiding nocturnal rainforest adventures. The keen eyes of Dan, Kristie, Bob, Pat, and Paula helped spot insects for this episode.

 This post appeared first on Bug of the Week

Sorry DC and Baltimore, no periodical cicadas for you this year, unless you take a road trip: Brood XIII (13) and Brood XIX (19), Magicicada spp

 

Holes about the size of dimes beneath trees appearing in March and April foretell the emergence of periodical cicadas.

 

This week we interrupt our six-legged adventures in Borneo and return to North America, to learn about all the hubbub surrounding the emergence of periodical cicadas. Last week Bug of the Week was bombarded with fearful and hopeful questions about the appearance of periodical cicadas here in the DMV. Cicadaphiles are eagerly anticipating an emergence, but irate entomophobes have called me out like this, “… but back in 2021 you told us they only come out every 17 years! Now, I have to get out of town again.” People have also heard that there is a “double brood” occurring this year. Does twice as much anguish or joy loom ahead for us in the DMV? Not so much, here is what will happen.

2024 is the year that the ginormous Great Southern Brood, Brood 19, will emerge from extreme Southern Maryland in a broad swath that ranges south to Mississippi, west to Texas, and north to the central U.S. This is arguably the largest brood of periodical cicadas in the U.S., right up there with Brood 10 which we enjoyed in our region in 2021. Brood 19, The Great Southern Brood, is fascinating and is comprised of four species of periodical cicadas which emerge every thirteen years. Also this year, the Northern Illinois Brood, Brood 13, will appear in a handful of midwestern states. Brood 13 is comprised of three species that emerge every 17 years. In a few locations in Illinois, Brood 19 and Brood 13 are expected to emerge simultaneously with seven species in total, producing one heck of a cicadapalooza and a fascinating biological event. The last time this happened with Broods 13 and 19 was 13 X 17 = 221 years ago, way back when the Louisiana Purchase brought a whole bunch of new territory to our growing nation.

Map of current known distributions of periodical cicada broods in the Mid-Atlantic. Source: https://www.cicadas.info/?page_id=96

What does the co-emergence of two broods in the same location mean? Will there be double the number of cicadas causing joy and terror? Will egg-laying damage in orchards, tree nurseries, and landscapes be dreadful and elevated? Will birds and small insectivorous mammals feast and enjoy greater survival and reproduction and will regular food items like caterpillars get a real break from beaks and toothy jaws? And will cicadas from Broods 13 and 19 mate and hybridize, resulting in who knows what? A fantastic ecological and evolutionary experiment brought to us by periodical cicadas and Mother Nature awaits us, if, indeed, there is significant overlap of the two broods. But let’s circle back to Brood 19 and cicadas in the DMV. Back in 2011, the last time Brood 19 visited our region way down in St. Mary’s County, Bug of the Week went on a quest to commune with periodical cicadas. The following is an excerpt from that episode posted in the spring of 2011 when the emergence of Brood 19 was underway.

Billions of cicada nymphs from Broods 19 and 13 will emerge in more than 15 states in the US this spring.

“As a cicada lover, I was more than a little jealous of our neighbors in southern and central states that were able to witness this amazing event. Fortunately, a couple of weeks ago, I began hearing reports of cicadas emerging in St. Mary’s County here in Maryland. These reports were confirmed last week when intriguing images of periodical cicadas arrived in my email. Upon closer examination of the distribution map of Brood XIX, one remarkable location was an outlier to the other populations of the Great Southern Brood, a tiny speck in St. Mary’s County. One major concern and oft discussed aspect of periodical cicada lore is their declining range. During the history of human occupation of North America, several localized broods of cicadas have disappeared, gone extinct. In his classic treatise on the biology and ecology of periodical cicadas, C. L. Marlatt mentioned the disappearance and shrinking distributions of several cicada broods in the United States. Experts suggest that fragmentation and elimination of cicada habitat due to farming and urbanization may be linked to vanishing cicadas in some locations. So, to witness this brood of magnificent creatures that may someday wink out of existence in Maryland, I loaded up my car with camera gear and set off in search of Maryland’s Brood XIX – the St. Mary’s survivors. After a disappointing search that consumed most of one day and yielded a single sighting, I was richly rewarded two days later with the otherworldly songs of thousands of cicadas in treetops festooned with egg-laying females and courting males near the small hamlet of Dameron in southern St. Mary’s County. 

The life of a cicada is mysterious and precarious. When their development is nearly complete in spring, they construct an escape tunnel to the surface of the earth. Soil temperatures in the middle sixties seem to be a signal that the world above ground is warm enough to support flight and reproduction. Many nymphs emerge at night and make a mad dash for vertical structures such as trees and shrubs, however, lampposts, street signs, and slowly moving people seem to work just as well. After climbing up and away from the soil, they attach to a firm object to begin the process of molting. Their outer skin or exoskeleton splits along a predetermined line on their back and the beautiful adult cicada wiggles free from the shell. The freshly molted adult is almost pure white except for bright red eyes and patches of black behind the head. Before its skin hardens, the cicada must expand its wings or it will be unable to fly and seek a mate. After wings and legs have hardened, cicadas scurry or fly to the treetops. Emergence from the earth and the final molt are perilous times for cicadas. Many cicadas survive interment underground for thirteen years only to perish attempting to molt or while trying to reach the safety of the trees.

During winter, periodical cicadas are still deep underground where they feed on plant roots. In late winter and early spring, their presence will be marked by exit holes beneath trees. Fully developed nymphs will take a peek at the world above ground before emerging when soil temperatures are in the mid-sixties. They will ascend vertical structures like trees and shed their exoskeletons to become adults. To the treetops they climb to chorus and mate during May and June. After mating, females deposit eggs in small branches. Eggs hatch into the next generation of cicadas destined to emerge with their brood-mates in 13 or 17 years.

Male cicadas produce their otherworldly sounds by vibrating a tymbal organ on their abdomen.

Male cicadas have evolved a unique structure called a tymbal. These paired organs are located on the sides of their bodies just beneath the wings. The tymbal is vibrated much like a drumhead to produce sound. Males produce a variety of calls for different purposes. If threatened by a predator such as a bird or a squirrel, a loud squawking noise is made in an attempt to startle the predator and make an escape. The principal function of the tymbal is to produce calls that assist in finding a mate and winning her affection. One type of call attracts both males and females to a common assembly place such as a large tree. When guys and gals get eye to eye, the male will use three distinct and different courtship songs to try and convince the gal that he should be the father of her nymphs. If the lady likes his advances, she will signal her approval by flicking her wings with an audible click.

After mating, the female cicada will move to tender young branches to lay eggs. Using a saber-like structure on her abdomen called an ovipositor, the female gouges groves into the woody tissue and lays 20 to 30 eggs in an egg nest. This process is repeated on one or more plants. Females lay as many as 600 eggs. After incubating for more than a month, eggs hatch and tiny nymphs a few millimeters long dive to the earth beneath the tree. In a matter of minutes, they burrow into the soil, find roots, and insert a small straw-like proboscis into the roots. Cicada nymphs hunker down underground sipping sap and slowly growing larger. Despite what you might have heard, cicadas are not blind. Their red eyes see fine. They do not bite, although, if very thirsty, one may probe you a bit with its tiny beak in search of moisture.

Female cicadas use a sharp, tubelike appendage called an ovipositor to slice small branches into which they deposit a cluster of eggs.

Cicadas have survived in North America for millions of years. Early records of cicadas date back to colonial times. A report from the April 3, 1751 edition of the Maryland Gazette noted that “We are informed from many Places, that the Caterpillars appear already in vast numbers, and in some Places the Locusts have been found in great plenty, just under the surface of the Earth, almost at their full growth: May God avert our impending Calamities.”  Well, we all know that locusts are not really found “just under the surface of the earth,” but in April cicadas ready to emerge would be found in droves. If you do the math, it is most likely that the locusts in this report were really the fully developed nymphs of Brood XIX cicadas ready to make their appearance. How marvelous! So, let’s hope that 2011 is another successful season for St. Mary’s survivors and, that in 260 years after another 20 broods, these wonders of nature will still be with us. Fingers crossed that a return to St. Mary’s County this spring will find Brood 19 alive and well having survived another 13 years.

Acknowledgements

Bug of the week thanks our friends at the Weather Channel for providing the inspiration for this episode. Paula Shrewsbury helped hunt and wrangle cicadas and provided images. The marvelous references “The periodical cicada” by C. L. Marlatt,  “Reproductive character displacement and speciation in periodical cicadas, with description of a new species, 13-year Magicicada neotredecim” by D. C. Marshall and J. R. Cooley, and “Advances in the Evolution and Ecology of 13- and 17-Year Periodical Cicadas” by  Chris Simon, John R. Cooley, Richard Karban, and Teiji Sota were used to prepare this episode. To learn more about these really cool insects, please visit the following websites:

https://www.cicadamania.com/

https://cicadas.uconn.edu/

This post appeared first on Bug of the Week

Preventing and Treating Ice Dam Infestations 

Is your home prepared for winter? In the right conditions, as little as one inch of snow could lead to the formation of ice dams. Common in northern climates, these natural phenomena can pose a nightmare for homeowners. Winter ice dams on roofs can cause structural damage and create ideal conditions for potential pest infestations.  

Don’t wait for the next snowstorm. Take proactive steps now to safeguard your home, preventing ice dams and removing them promptly as needed to avoid damage and associated pest problems.  

What Is an Ice Dam 

More than just icicles, ice dams are large portions of ice that form along rooftop edges. In addition to creating stress on gutters and roofing materials, ice dams can prevent melting snow from draining adequately from the roof. As moisture accumulates behind the ice dam, it can seep under roof shingles and lead to leaks inside your home. As a result, walls, insulation, ceilings, and floors can sustain damage. Additionally, mold and mildew can grow, further damaging the building’s structure and your indoor air quality. 

What Causes Winter Ice Dams? 

When snow accumulation on the roof melts during the warmer daytime temperatures and refreezes at night, it can become trapped. Eventually, after 24 hours to several days, melted water and ice can infiltrate between and under roofing materials.  

Although it can happen with minimal snow, ice dam formation is more common with accumulations of six inches of snow or more. Ice dams can weigh hundreds of pounds or more, depending on their size. This underscores the potential stress that the ice alone creates on your home’s building structure. Add water infiltration to the mix, and you can see why prevention and prompt ice dam removal are critical.  

The Ice Dam-Pest Connection 

Ice dams can wreak havoc on the structural integrity of your roof and home. But why does it put you at increased risk of pest infestations?  

Warmth and Shelter 

Rodents and other pests typically enter homes and other buildings to find relief from the winter wonderland outdoors. As snow and ice accumulate outdoors, pests actively look for cracks and openings to get out of the elements. Ice dams can cause damage to the foundation and other areas, creating new gaps and cracks around pipes, vents, and other areas. These openings provide entry points that you might not realize are present.  

Moisture 

Some pests are drawn to moisture-rich environments, particularly carpenter ants and termites — both of which can cause further structural damage. Cockroaches and other insects are also attracted to the moisture-damaged areas affected by winter ice dams.  

Easy Entry 

Damaged roof shingles and the havoc caused by ice dams increase access points, giving pests easy entry to the interior of your home. Mice and rats can squeeze through the tiniest openings, and insects will exploit the easy entry provided by ice dams.  

Preventing Ice Dams 

Before you can effectively prevent winter ice dams, it’s helpful to understand the root cause. Snow accumulation is only one part of the problem. Uneven surface temperatures on the roof and heat loss from your home contribute to the formation of ice dams. Addressing the causes of uneven roof temperatures and removing snow accumulations can go a long way to protecting your home from the ravages of winter. 

Proper Insulation 

Heat loss from the attic and roof can exacerbate the natural freeze-thaw cycle and increase the likelihood of ice dam formation. Upgrading insulation can help minimize heat transfer and reduce the risk of ice dams while providing opportunities to save money on energy costs.  

Adequate Ventilation 

Adding adequate ventilation between your living spaces, attic, and the outdoors is another essential step for homeowners. Ample airflow under soffits and eaves will even out the temperatures between the attic and roof. This helps minimize the freeze-thaw cycle and its negative effects. If a homeowner notices ice dams or dark discoloration to the underside of the roof from inside their attic, it is recommended to consult a specialist to address potentially poor ventilation. 

Roof Maintenance 

Cleaning out debris from gutters and downspouts before winter and keeping them clear throughout the season can help reduce the odds of an ice dam forming. Additionally, it’s helpful to use a roof rake to clear snow accumulation from the eaves. It’s also a prudent practice to keep up with regular roof inspections and promptly repair damaged shingles.  

Treating Ice Dams 

What should you do once ice starts accumulating? It’s possible to avoid ice dam infestations with prompt treatment, including the following:  

Snow Removal 

Try to keep snow accumulation on the roof to a minimum when possible. Using roof rakes, which are long-handled devices that let you remove snow from ground level, can help. Removing snow from the roof prior to the snow freezing and hardening can help prevent winter ice dams from ever forming. Additionally, breaking up ice accumulations with a mallet can enhance drainage to prevent ice accumulation.  

Ice Melt Products 

Once ice has formed, you can minimize the damage with de-icing methods. Ice melting products like calcium chloride, which is commonly used for melting ice on sidewalks, can also help remove and reduce ice dams. To avoid damaging shingles, siding, and vegetation, fill the leg of a knee-high pantyhose or sock with ice melt and position it over the ice dam.  

Professional Assistance 

Safety is paramount, particularly when dealing with matters pertaining to your home’s roof. Professionals can safely remove ice dams and make preventative recommendations that are specific to your home and roof configuration. Professionals can also provide attic cleanup and repair to fix any of the damage you have sustained and minimize the risk of ending up with ice dam infestations.  

Contact Catseye Pest Control for Professional Help You Can Count On 

Not only can Catseye provide attic abatement, clean-out, and restoration, but we can also address ventilation issues and install new insulation. We can assess your property to determine if installing Cat-Guard Exclusion systems would be beneficial and help treat any pest problems you may have. For the ultimate peace of mind in your home this winter and in every season. Schedule a free inspection today. 

The post Preventing and Treating Ice Dam Infestations  appeared first on Catseye Pest Control.

This article appeared first on Catseye Pest

Rainforest raiders: Fierce Leptogenys ants

 

On the rainforest floor, a column of Leptogenys workers like this one transport food to the colony and help relocate the colony from one hunting zone to another.

 

This week we return to the rainforests of Borneo in the spectacular Tabin Wildlife Reserve where we met millipedes, stingless bees, and lanternflies in previous episodes. Here on the rainforest floor several hundred species of ants can be found, but one of the most ferocious members of the ant clan are the predatory ants in the genus Leptogenys. Although Leptogenys share many characteristics with their army ant cousins which we met in the rainforests of Costa Rica, they are members of a different subfamily of ants known as the Ponerinae. They contrast to the true army ants that are members of the subfamily Dorylinae. Despite their taxonomic distinction, they share many attributes in common with true army ants, not the least of which is their ability to conduct massive swarm raids to plunder an impressive variety of prey as food for their colony. Their smorgasbord includes a wide variety of prey – small invertebrates like spiders, centipedes, millipedes, earth worms, flatworms, and many insects, and some vertebrates including frogs and snakes.

Life and death in Tabin Wildlife Reserve includes fierce Leptogenys ants that plunder several kinds of prey on the rainforest floor. A slow-motion video clip of the frenetic column reveals several workers with unidentified insects clamped tightly in their jaws. Are these other ants, termites, or some tasty insect morsal? The lens fails to reveal. Moments later along the same column, the band of sisters transport a tattered moth back to the nest to fill the hungry mouths of waiting ant larvae and the queen mother.

Cooperation is the name of the game when sister Leptogenys capture prey like this moth and move it back to the nest.

Leptogenys colonies can be massive with more than 50,000 workers attending the colony and its queen. Swarm raids to capture food for the colony may consist of tens of thousands of workers. The raid begins at dusk when workers leave the nest to forage during the night. The raiding column begins as a single line of workers which then bifurcates repeatedly to form a massive fan-shaped front of terror that may span as much as 300 square meters of rainforest floor. When a worker encounters potential prey, a massive attack ensues as scores of workers rapidly respond to subdue the prey. The bites and wicked stings of hundreds of nestmates immobilize the victim. Using sharp, powerful jaws, workers dismember the prey and transport the pieces of meat back to the nest to feed the queen and developing brood. Less savory body parts such as wings and legs may be discarded.

As prey are expunged from one part of the rainforest, the colony is regularly relocated and remains in the same location for only a few days. The emigration from an old site to a new one is an orderly process where helpless pupae and larvae are the first to be carried to the new nest site by workers. Young workers bring up the rear. The queen is also part of the entourage, while a picket line of wary workers guards the route as the colony moves to its new location. Famed entomologist and sociobiologist E. O. Wilson once remarked “ants have the most complicated social organization on earth next to humans.” We could learn something about cooperation by watching Leptogenys at work.  Stay tuned for more ant stories from Borneo at Bug of the Week.

Acknowledgements

Several great articles including “A South East Asian Ponerine of the Genus Leptogenys (Hym., Form.) with Army Ant Life Habits” by U. Maschwitz, S. Steghaus-Kovac, R. Gaube and H. Hänel, and “Topology of the foraging trails of Leptogenys processionalis – Why are they branched?” by K.N. Ganeshaiah and T. Veena provided insight into Leptogenys, as did “The Ants” by Bert Hölldoppler and Edward O. Wilson.  We thank Oliver at Tabin Wildlife Reserve for braving rainforest trails to help us find insects and the keen eyes of Dan, Kristie, Bob, Pat, and Paula for spotting insects. Special thanks to Chien C. Lee at Wild Borneo Photography for help in identifying the star of this episode.

This post appeared first on Bug of the Week

Invasive Pest Species: A Threat to Ecosystems of Connecticut  

Sprawling sandy beaches, gentle rolling hills, and expansive forests — Connecticut’s natural beauty encompasses ecosystems of varying types. The gorgeous surroundings are a source of pride for the state’s 3.6 million residents and are also a big part of what attracts the growing number of visitors who generate billions in revenue.  

What the Constitution State lacks in square mileage, it more than makes up for in expansive, beautiful ecosystems. From its more than 175,000 acres of protected forests to 618 miles of coastline, the natural landscape is one of Connecticut’s vital resources. 

Invasive pests are one of the serious threats that Connecticut’s thriving ecosystems face today. As leaders in the pest control industry, Catseye Pest Control thoroughly understands the threat of invasive pests and the potential impact to the area’s ecosystems and beyond.  

Invasive Pest Species in Connecticut 

Invasive pests include various insects, invertebrates, and other animals that aren’t native to the area. Because these species are alien to Connecticut’s natural ecosystem, they can create widespread harm to the environment. Five primary invasive pests in Connecticut include the following:   

Spotted Lanternfly 

An adult spotted lanternfly has colorful wings with black, red, tan, and white markings with black spots toward the center. Young nymphs have black bodies with white spots, while older adolescents develop red patches. The spotted lanternfly feeds on the sap of trees, and roughly 47% of Connecticut’s forest trees are vulnerable to these creatures. Agricultural damage can be extensive, and fruit trees, grapes, and hops are particularly vulnerable. Home landscaping is also susceptible to spotted lanternflies.  

Emerald Ash Borer 

This green beetle can appear glossy or iridescent and typically reaches no longer than 0.55 inches as an adult. These insects feed on ash trees, both as larvae and as adults. Because they aren’t native to the area, Connecticut’s ash trees don’t have natural protection to guard against these destructive insects.  

Spongy Moth 

The spongy moth, formerly named “gypsy moth,” has been in North America since the late 1800s. Larvae may grow up to two inches long with multiple pairs of red and blue spots. Adult females are cream-colored with dark markings, while males are grayish-brown with dark markings and feathered antennae. This moth can damage forests and landscape trees of all varieties, although oak typically is its preferred food source. 

Asian Longhorned Beetle 

The Asian longhorned beetle could devastate Connecticut’s trees. This large, black, shiny insect often has white spots and long, striped antennae. One of the most challenging aspects of controlling this pest is its ability to go undetected for long periods, during which time they can wreak havoc on Connecticut’s trees. 

Jumping Worms 

Jumping worms look a lot like standard earthworms, but they have muscular bodies with a milky white, flat, smooth band at one end. These worms move quickly and are active climbers that can often be found in mulch and leaf debris. The threat to Connecticut’s ecosystem includes displacement of native earthworms, nutrient depletion in the soil, and destruction of various plants. 

The Cost of Invasive Pest Species 

Globally, invasive pests cost upward of $420 billion every year. They destroy crops, forests, landscaping and more, creating a ripple effect that impacts the economy, environment, and even human health.  

Decline of Native Species 

Invasive species in Connecticut can affect natural insects and animals in various ways. For example, aggressive insects without natural predators can quickly spread and push native species out of the area. Invasive pests may outcompete native insects and animals for resources or even prey directly on them. Additionally, invasive threats can alter the ecosystem and replace or destroy native species’ natural sources. 

Economic Impact 

The damage to nature, food systems, and threats to human health add up to staggering amounts of money. Invasive species can impact water facilities and natural waterways and create adverse effects to fisheries and farms. Connecticut’s tourism industry is also heavily tied to its vibrant ecosystems, which means that threats to the ecosystem could eventually decimate tourism. The state’s tourism industry brings in billions of dollars every year.  

Altered Ecosystem 

Invasive species are linked to 60% of extinction events for species worldwide. Loss of biodiversity can also set off a chain reaction that could potentially end in disaster. For example, the spread of invasive plants fueled the devastating 2023 Maui wildfires. In short, altering ecosystems can lead to the death of native species and permanently alter habitats. 

Human Health Risks 

As pests spread, they bring increased risk of introducing new pathogens into the population. Case in point — the spread of mosquitoes into new areas brings the threat of dengue, West Nile virus, and other illnesses. Infecting humans with new diseases, spreading existing ones, triggering allergic responses, and causing painful or itchy bits are other risks associated with many invasive pests.  

Causes – Human Activities and Environmental Factors 

Human activity is among the biggest factors in spreading invasive species. Globalization and improved travel methods make it easy for people and goods to inadvertently introduce foreign species into various ecosystems. Intentionally released pets, like the Everglades’ Burmese pythons, can become a significant issue.  

Additionally, climate change creates new ways for species to travel. For example, as sea ice melts, shipping routes open to new areas, potentially bringing new pests along with them. Likewise, warming temperatures may expand the range of warm-weather insects into areas previously considered too cool. 

Mitigation and Solutions 

As with so many other problems, prevention is one of the very best ways to stop invasive pests. Early detection helps avoid unintentional spread and stop the population from spreading out of control. Everyone can play a part in mitigating the spread of invasive pests in Connecticut and beyond.  

Examples of some preventive solutions you could put into practice include the following: 

  • Learn: Get information about invasive species threatening your local area and learn how to identify them. If you see evidence of invasive pests, report them to your county extension agent or local government authorities.  
  • Act: When you travel, hike, or boat, clean your items, including your boots, boat, and luggage to avoid inadvertently packing pests and transporting them from place to place.  
  • Avoid: Don’t release fish from your aquarium into waterways or exotic pets you no longer want into the wilderness. Doing so introduces potentially invasive species into the environment.  

Control Pests on Your Property with Services from Catseye 

Preserving Connecticut’s natural beauty is essential. You can play your part while keeping your home or business pest-free with effective prevention and control. Cat-Guard Residential Exclusion Systems offer a permanent, chemical-free, humane option that prevents pests from entering protected areas.  

Catseye’s trained, licensed technicians will inspect your property, assess its vulnerabilities, and devise a solution tailored to your unique needs. Learn more about this long-term barrier and the solution it offers for residential and commercial properties online or by calling 888-298-2173. 

[Schedule a Visit

The post Invasive Pest Species: A Threat to Ecosystems of Connecticut   appeared first on Catseye Pest Control.

This article appeared first on Catseye Pest

Encounters with Bornean kelulut: stingless bees, Meliponini

 

Pollen baskets loaded? Check. One last sip of nectar? Check. Passion flower pollinated? Check. Time to return to the hive to feed the sisters. The passion flower says thanks.

 

Cracks in masonry walls often provide a suitable nest site for stingless bees. The horn-shaped entrance made of propolis (wax and other substances) narrows the entry way to the hive, making entry from intruders more difficult.

In recent weeks we visited the magnificent millipedes and elegant sap-sucking lanternflies in the Bornean rainforests. This week let’s meet stingless bees, pollinators helping to sustain biodiversity in the plant world. Here in the US our notion of bees is usually western honeybee-centric, visions of rectangular white boxes packed with racks of honeycomb, busy workers gathering pollen and nectar, and a queen producing legions of brood all guarded by fearless female warriors capable of a delivering a fierce sting. Although they are closely related to western honeybees, tropical stingless bees, which in Borneo and other parts of Malaysia are known as kelulut, are quite a bit different. In the natural world, they typically nest in tree hollows and earthen crevices, but with invasion of their realm by modern man cracks and crevices in wooden, cinder block, and masonry walls have become popular nesting sites. Often these hollows have rather large openings and to limit access to the colony and facilitate defense, voids are narrowed to trumpet-shaped entrances constructed with a sticky substance called propolis, a mixture of wax and other materials. This defensible portico may be help stingless bees repel ants and other creatures that would love to raid the colony and plunder honey, pollen, and baby bees inside.  

Honey produced by western honeybees, Apis mellifera, is an important commercial enterprise in many parts of the world. Honey produced by solitary bees has been described as sour or bitter sweet. It is valued as much for its medicinal properties that sources claim include anti-bacterial, anti-carcinogen and anti-oxidant properties, as it is for its flavor. The domestication of stingless bees is known as meliponiculture. The value of locally produced kelulut honey is so great that in 2019 the Malaysian government launched a National Kelulut Honey Industry Plan to assist beekeepers to supply stingless bee honey to a world market, hopefully at a hefty profit. 

An excited tourist reported swarms of unidentified insects outside his cabin at Tabin Wildlife Reserve. At first glance, these appeared to be tiny flies, but on closer inspection the frenetic horde proved to be a species of small stingless bees that built their colony in the wall void of the cabin. In a more natural setting on an ancient tree in the Sun Bear Conservation Centre in Sepilok, Malaysia, a trumpet shaped cone of propolis marked the entryway to a colony of mellow stingless bees. Nearby, stingless bees provided the vital service of pollination to a passiflora blossom while gathering nectar and pollen for their colony.

Almost home, a stingless bee with pollen baskets fully loaded, is on final approach to an ancient tree where her nestmates guard the horn-shaped entryway the hive.

Although stingless bees lack the ability to sting, they are by no means defenseless. In past encounters with solitary bees in the tropical rainforests of Belize, they proved otherwise. In a previous episode we reported on a large dark Belizean bee that employed a highly effective defense. The nest entrance of this species was guarded by several workers carefully watching the movements of people nearby. When one person ventured a little too close to the colony, bees mounted a surprising attack. The assault consisted of dozens of workers flying into faces and hair of nearby humans. Bees paid special attention to eyes, noses, and ears where, despite the absence of stings, their annoying bites were unpleasant and persistent, forcing the intruders to vacate the premises near the hive. 

Recently, scientists have discovered that stingless bee soldiers are a unique caste, some 30% heavier than their nest-mates. Their job is to guard the colony against marauding enemies, including species of robber bees that commonly raid stingless bee colonies. Their coup de main involves grabbing an invader by antenna or wing and refusing to let go, thereby thwarting an attack. In his book, The Insect Societies, E.O. Wilson describes accounts of stingless bees attacking human intruders. Some species eject an irritating liquid that causes a burning sensation to skin. This trick has earned them the local name of cagafogos or “fire defecators” in Brazil. So potent is this defense that it may dissuade very aggressive attackers like army ants from entering nests. In Bornean rainforests and nearby open areas stingless bees were common visitors to many kinds of flowering plants, gathering nectar and pollen. Although past encounters with stingless bees in Central America were spicy, we were able to observe and enjoy mellow Bornean stingless bees without drama. Lucky us. 

Acknowledgements

References used in this episode include the following: “A morphologically specialized soldier caste improves colony defense in a neotropical eusocial bee” by Christoph Grütera, Cristiano Menezesb, Vera L. Imperatriz-Fonsecab, and Francis L. W. Ratnieksa, and the fascinating “The Insect Societies” by E.O. Wilson. Once again, we thank our rainforest guides, Leo on the Kinabatangan River, Larry at Mulu National Park, and Oliver at Tabin Wildlife Reserve for helping us find insects, and adventurers Dan, Kristie, Bob, Pat, and Paula for spotting insects and providing ideas about creatures featured in these episodes. 

To learn more about stingless bee farming in Borneo, please visit this website: https://www.mysabah.com/wordpress/stingless-bee-kelulut-farming-sabah/

This post appeared first on Bug of the Week

(877) 959-3534